

Agenda:

- 1) Bell Ringer: page 31
- 2) Lesson 3: Numbers in Exponential Form Raised to a Power

EQ: What is the rule for an exponent raised to a power?

- 3) Homework: Lesson 3 (1-6) (p.29 in booklet)
- 4) Exit Ticket (p.30 in booklet)

Classwork

Exercise 1
$$(15^3)^9 = (5^{3.9} - 15^{2.7})$$

Exercise 3
$$(3.4^{17})^4 = 3.4 = 3.4$$

Exercise 2
$$((-2)^5)^8 = (-2)^5 \cdot \% = (-2)^4$$

40 Exercise 4

Let s be a number. 17.4 68

Exercise 5

Sarah wrote $(3^5)^7 = 3^{12}$. Correct her mistake. Write an exponential expression using a base of 3 and exponents of 5, 7, and 12 that would make her answer correct.

$$\frac{\text{correct}}{(3^5)^7 = 3^{5.7}} = 3^5$$
Power Rule

Homework

Write each answer as a base raised to a power or as the product of bases raised to powers that is equivalent to the given one.

- 1. $(9^3)^6 =$
- 2. $(113^2 \times 37 \times 51^4)^3 =$
- 3. Let x, y, z be numbers. $(x^2yz^4)^3 =$

- 4. Let x,y,z be numbers and let m,n,p,q be positive integers. $(x^my^nz^p)^q=$
- 5. $\frac{4^8}{5^8} =$
- 6. Show (prove) in detail why $(2 \cdot 3 \cdot 7)^4 = 2^4 3^4 7^4$.

 	-	